- Главная
- Математика
- Начертательная геометрия. Проецирование прямой линии

Содержание
- 2. Прямые частного положения Прямые уровня Горизонтальная прямая Фронтальная прямая
- 3. Профильная прямая
- 4. В учебнике по геометрии (автор Атанасян Л.С. и др. Геометрия для 10-11 кл. М.: Просвещение. 2009.
- 5. Проецирующие прямые
- 7. Правило Определение длины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций Следует построить
- 9. Скачать презентацию
Слайд 3Профильная прямая
Профильная прямая

Слайд 4В учебнике по геометрии (автор Атанасян Л.С. и др. Геометрия для 10-11
В учебнике по геометрии (автор Атанасян Л.С. и др. Геометрия для 10-11

кл. М.: Просвещение. 2009. 207 с.) приведена с доказательством задача №132): «Доказать, что если прямая параллельна плоскости, то все точки прямой равноудалены от плоскости
Дано:
Прямая a || α
Доказать: все точки прямой a равноудалены от плоскости α.
Доказательство
Выберем на прямой a две произвольные точки А и В.
Докажем, что расстояния от точки А и от точки В до плоскости α равны: ААα = ВВα.
Если прямая a параллельна плоскости α, то в плоскости α содержится множество прямых, параллельных данной прямой a, например, прямая a1.
Определим расстояния от точек А и В до плоскости α - ААα и ВВα:
ААα α и ВВα α. Так как перпендикуляра к одной плоскости параллельны, то
ААα || В Вα.
Проведем АА1 || ВВ1, соединим точки Аα и А1 Вα и В1 и рассмотрим два равных треугольника - ААαА1 и ВВαВ1: АА1 = ВВ1 как отрезки параллельных прямых, заключенных между двумя другими параллельными прямыми; АαА1 = ВαВ1 как проекции равных наклонных.
Из равенства треугольников следует, что ААα = ВВα – что и требовалось доказать.
Слайд 5
Проецирующие прямые
Проецирующие прямые

Слайд 7Правило
Определение длины отрезка прямой общего положения и углов наклона прямой к
Правило
Определение длины отрезка прямой общего положения и углов наклона прямой к

плоскостям проекций
Следует построить прямоугольный треугольник, одним катетом которого является горизонтальная (фронтальная) проекция отрезка, другим катетом - абсолютная величина алгебраической разности аппликат (ординат) концов отрезка.
Гипотенуза будет равна длине отрезка, а угол между гипотенузой и катетом, равным горизонтальной (фронтальной) проекции отрезка, равен углу наклона отрезка к горизонтальной (фронтальной) плоскости проекций.
Следует построить прямоугольный треугольник, одним катетом которого является горизонтальная (фронтальная) проекция отрезка, другим катетом - абсолютная величина алгебраической разности аппликат (ординат) концов отрезка.
Гипотенуза будет равна длине отрезка, а угол между гипотенузой и катетом, равным горизонтальной (фронтальной) проекции отрезка, равен углу наклона отрезка к горизонтальной (фронтальной) плоскости проекций.


Сравнение чисел
Корреляционный анализ
Признаки делимости
Интерактивный тренажёр Реши уравнения
Формула разности квадратов. Тест. 7 класс
Теория вероятностей и математическая статистика
Аналитическая геометрия в пространстве
Геометрия в оптических иллюзиях
Тела вращения. Урок 142
Сфера и шар
Кривые, заданные параметрически
Пирамида. Творческая групповая работа 11класс
Деление суммы на число
Решение линейных систем уравнений способом подстановки
Ликвидация пробелов в знаниях по теме Соотношения между сторонами и углами треугольника
3 класс. Разминка
Первообразная
Основы планирования режимов технической эксплуатации (техническое обслуживание и его характеристика)
Метрология и теория измерений. Лекция 10
Прямоугольный треугольник. Задачи. 7 класс
Реализация преемственности между начальной школой и основной в обучении математики
Аттестационная работа. Решение сложных задач по математике
Решение систем неравенств второй степени с двумя переменными
Теория вероятностей и математическая статистика
Алгоритм Евклида
Функция y=kx2, её свойства и график
Круглые тела
Математика и здоровье