оценки совместного распределения и для вычисления интегралов методом Монте-Карло . Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса.
Семплирование по Гиббсу замечательно тем, что для него не требуется явно выраженное совместное распределение, а нужны лишь условные вероятности для каждой переменной, входящей в распределение. Алгоритм на каждом шаге берет одну случайную величину и выбирает ее значение при условии фиксированных остальных. Можно показать, что последовательность получаемых значений образуют возвратную цепь Маркова, устойчивое распределение которой является как раз искомым совместным распределением.
Применяется семплирование по Гиббсу в тех случаях, когда совместное распределение случайных величин очень велико или неизвестно явно, но условные вероятности известны и имеют простую форму.
Семплирование по Гиббсу