Содержание
- 2. Параллельный перенос и Поворот.
- 3. Содержание. Основные виды движений. Определения: Движение. Поворот. Параллельный перенос.
- 4. Осевая и центральная симметрии Поворот Параллельный перенос Основные виды движений:
- 5. Отображение плоскости на себя, сохраняющее расстояние, называют – движением. Движение.
- 6. Поворотом фигуры F вокруг центра O на данный угол φ (0° ≤ φ ≤ 180°) в
- 7. Поворот.
- 8. Поворот является движением О Y X
- 9. А(-4:-1) В(-5;3) D(-1;1) С(-1;3) A1(1;4) B1(3;5) C1(3;1) D1(1;1) Задача: Построить образ данной трапеции при повороте на
- 10. M N N1 M1 Центральная симметрия есть поворот на 180°: О
- 11. Параллельный перенос Параллельным переносом на вектор а называется отображение плоскости на себя, при котором каждая точка
- 12. Параллельный перенос есть движение. Наглядно это движение можно представить себе как сдвиг всей плоскости в направлении
- 13. Параллельный перенос на плоскости в системе координат. Введем на плоскости систему координат O, X, Y. Преобразование
- 14. А(-6:3) В(-1;3) С(-2;1) D(-5;1) Построить трапецию, которая получится из данной трапеции параллельным переносом на вектор a{
- 15. Задача: Построить трапецию, которая получится из данной трапеции параллельным переносом на вектор АD (на вектор BC).
- 16. C1(2;3) D1(4;1) B1(1;3) A1(-1;1) 1 вариант (ответ) 2 вариант
- 17. A1 (-5;1) B1 (-3;3) C1(-2;3) D1(0;1) 2 вариант (ответ)
- 19. Скачать презентацию