Математический язык. Математическая модель

Содержание

Слайд 2

Цели:

19.04.2012

Дать понятие об уравнении и его корнях.
Дать понятие о линейном уравнении и

Цели: 19.04.2012 Дать понятие об уравнении и его корнях. Дать понятие о
его решении.
Текстовые задачи и их решение с помощью уравнений.

Слайд 3

19.04.2012

Одной из самых простых и важных математических моделей реальных ситуаций есть линейные

19.04.2012 Одной из самых простых и важных математических моделей реальных ситуаций есть
уравнения с одной переменной.

3х = 12

5у - 10 = 0

2а +7 = 0

Решить линейное уравнение с одной
переменной – это значит найти те значения
переменной, при каждом из которых
уравнение обращается в верное числовое
равенство.

Слайд 4

х + 2 = 5

х = 3

Уравнение.

Корень уравнения.

19.04.2012

Корень уравнения - значение переменной,

х + 2 = 5 х = 3 Уравнение. Корень уравнения. 19.04.2012
при котором уравнение обращается в верное числовое равенство.

Слайд 5

Найдём корень уравнения:

х + 37 = 85

х

37

85

=

_

х = 48

Мы решили уравнение!

19.04.2012

Решили уравнение

Найдём корень уравнения: х + 37 = 85 х 37 85 =
– нашли те значения переменной, при котором уравнение обращается в верное числовое равенство.

Слайд 6

Не решая уравнений, проверь, какое из чисел является корнем уравнения.

42;

0;

14;

12

87 + (32

Не решая уравнений, проверь, какое из чисел является корнем уравнения. 42; 0;
– х) = 105

19.04.2012

Слайд 7

42;

0;

14;

12

87 + (32 – 14) = 105

87 + (32 – 42) =

42; 0; 14; 12 87 + (32 – 14) = 105 87
77

87 + (32 – х) = 105

87 + (32 – 0) = 119

87 + (32 – 12) = 107

х = 14

19.04.2012

Слайд 8

Решим уравнение:

(35 + у) – 15 = 31

y = 11

19.04.2012

35 + у

=

31

+

15

35

Решим уравнение: (35 + у) – 15 = 31 y = 11
+ у

=

46

y = 46 -35

Решить уравнение – это значит найти все его корни или доказать, что их нет

Слайд 9

19.04.2012

Каждое уравнение имеет одни и
те же корни
х₁ = 2 х₂

19.04.2012 Каждое уравнение имеет одни и те же корни х₁ = 2
= 3

Уравнения, которые имеют одни и
те же корни, называют
равносильными.

Слайд 10

19.04.2012

При решении уравнений используют
свойства:

Если в уравнении перенести слагаемое из одной

19.04.2012 При решении уравнений используют свойства: Если в уравнении перенести слагаемое из
части в другую, изменив его знак, то получится
равносильное уравнение.

2. Если обе части уравнения умножить или
разделить на число (не равное нулю), то
получится равносильное
уравнение.

Слайд 11

Решите уравнение и выполните проверку:


у - 35 + 12 = 32;
у

Решите уравнение и выполните проверку: у - 35 + 12 = 32;
– 23 = 32;
у = 32 + 23;
у = 55;
(55 - 35) + 12 = 32;
30 + 12 = 32;
32 = 32.

(у - 35) + 12 = 32;

Решение.

Ответ: 55.

19.04.2012

Решение уравнений состоит в постепенной замене более простыми равносильными уравнениями

Слайд 12

Решите уравнение и выполните проверку:

24 - 21 + х = 10;

Решите уравнение и выполните проверку: 24 - 21 + х = 10;

х + 3 = 10;
х = 10 - 3;
х = 7
(24 + 7) - 21 = 31 - 21 = 10;
Ответ: 7.

б) (24 + х) - 21 = 10;

Решение.

19.04.2012

Решение уравнений состоит в постепенной замене более простыми равносильными уравнениями

Слайд 13

19.04.2012

Решите уравнение и выполните проверку:

45 + 18 - у = 58;
63

19.04.2012 Решите уравнение и выполните проверку: 45 + 18 - у =
- у = 58;
у = 63 - 58;
у = 5
(45 - 5) + 18 = 40 + 18 = 58.
Ответ: 5.

Решение.

в) (45 - у) + 18 = 58;

Решение уравнений состоит в постепенной замене более простыми равносильными уравнениями

Слайд 14

19.04.2012

Уравнение вида:

aх + b = 0

называется линейным уравнением

19.04.2012 Уравнение вида: aх + b = 0 называется линейным уравнением с
с одной переменной (где х – переменная,
а и b некоторые числа).

Внимание!

х – переменная входит в уравнение
обязательно в первой степени.

Слайд 15

19.04.2012

Решите уравнение :

2(3х - 1) = 4(х + 3)

Решение уравнений

19.04.2012 Решите уравнение : 2(3х - 1) = 4(х + 3) Решение
состоит в постепенной замене более простыми равносильными уравнениями.

aх + b = 0

Приведем к стандартному виду:

2(3х - 1) = 4(х + 3)

6х – 2 = 4х + 12

6х – 4х = 2 + 12

2х = 14

х = 14 : 2

х = 7

- уравнение имеет 1 корень

Слайд 16

19.04.2012

уравнение имеет бесконечно много корней

Решите уравнение :

2(3х - 1) =

19.04.2012 уравнение имеет бесконечно много корней Решите уравнение : 2(3х - 1)
4(х + 3) – 14 + 2х

Приведем к стандартному виду:

aх + b = 0

2(3х - 1) = 4(х + 3) – 14 + 2х

6х – 2 = 4х + 12 – 14 + 2х

6х – 4x - 2х = 2 + 12 – 14

0 · x = 0

При подстановке любого значения х получаем
верное числовое равенство:

0 = 0

x – любое число

(а = 0, b = 0)

Слайд 17

19.04.2012

Уравнение корней не имеет

Решите уравнение :

2(3х - 1) = 4(х

19.04.2012 Уравнение корней не имеет Решите уравнение : 2(3х - 1) =
+ 3) + 2х

Приведем к стандартному виду:

aх + b = 0

2(3х - 1) = 4(х + 3) + 2х

6х – 2 = 4х + 12 + 2х

6х – 4x - 2х -2 - 12 = 0

0 · x - 14 = 0

При подстановке любого значения х получаем
неверное числовое равенство:

-14 = 0

(а = 0, b = -14)

Слайд 18

19.04.2012

Вспомним!

При решении задачи четко выполнены три этапа:

Получение математической модели.
Обозначают неизвестную в задаче

19.04.2012 Вспомним! При решении задачи четко выполнены три этапа: Получение математической модели.
величину буквой,
используя эту букву, записывают другие величины,
составляют уравнение по условию задачи.

2) Работа с математической моделью.
Решают полученное уравнение,
находят требуемые по условию задачи величины.

3) Ответ на вопрос задачи.
Найденное решение используют для ответа на вопрос задачи
применительно к реальной ситуации.

Математическая модель позволяет анализировать
и решать задачи.

Слайд 19

19.04.2012

Задача:

Три бригады рабочих изготавливают игрушки к Новому году. Первая бригада
сделала шары.

19.04.2012 Задача: Три бригады рабочих изготавливают игрушки к Новому году. Первая бригада
Вторая бригада изготавливает сосульки и сделала их на 12 штук больше, чем шаров. Третья бригада изготавливает снежинки и сделала их на 5 штук меньше, чем изготовлено шаров и сосулек вместе. Всего было сделано 379 игрушек. Сколько в отдельности изготовлено шаров, сосулек и снежинок?

Шары –
Сосульки –
Снежинки -

?

?

на 12 шт. больше, чем

?

?

- на 5 шт. меньше, чем

Получение математической модели.

Обозначим шары –
сосульки –
снежинки -

х (шт.)

х + 12 (шт.)

х + х + 12 = 2х + 12 (шт.)

2х + 12 – 5 = 2х + 7 (шт.)

Так как по условию всего было сделано 379 игрушек, то составим уравнение:

х + (х + 12) + (2х + 7) = 379

линейное уравнением с одной переменной

Слайд 20

19.04.2012

2) Работа с математической моделью.

х + ( х + 12) +

19.04.2012 2) Работа с математической моделью. х + ( х + 12)
(2х + 7) = 379

х + х + 12 + 2х + 7 = 379

Решение уравнений состоит в постепенной замене более простыми равносильными уравнениями.

Приведем к стандартному виду:

aх + b = 0

4х + 19 = 379

4х = 379 - 19

4х = 360

х = 360 : 4

х = 90

90 шт. - шаров

х + 12 = 90 + 12 = 102 (шт.) - сосульки

2х + 7 = 2 · 90 + 7 = 187 (шт.) - снежинок

3) Ответ на вопрос задачи:

90 шт. – шаров,

102 (шт.) – сосульки,

187 (шт.) - снежинок

Имя файла: - -Математический-язык.-Математическая-модель-.pptx
Количество просмотров: 584
Количество скачиваний: 0