Применение свойств квадратичной функции при решении уравнений и неравенств с параметром Урок по алгебре и началам анализа в 11

Слайд 2

Какую информацию о графике функции f(x) можно получить, зная коэффициенты квадратного трёхчлена?

если

Какую информацию о графике функции f(x) можно получить, зная коэффициенты квадратного трёхчлена?
старший коэффициент квадратного трёхчлена больше нуля, то ветви параболы направлены вверх,
если старший коэффициент квадратного трёхчлена меньше нуля, то ветви параболы направлены вниз,
если старший коэффициент квадратного трёхчлена равен нулю, то графиком функции является не парабола, а прямая; (и соответствующее уравнение надо решать не как квадратное, а как линейное),
если дискриминант больше нуля, то парабола пересекает ось абсцисс в двух точках,
если дискриминант равен нулю, то парабола касается оси абсцисс, если дискриминант меньше нуля, то парабола не пересекает ось абсцисс,
абсцисса вершины параболы равна .-в/2а

Слайд 3

Используя полученные знания, ответьте на вопросы. Выберите вариант полученного ответа

.При каких значениях

Используя полученные знания, ответьте на вопросы. Выберите вариант полученного ответа .При каких
а парабола у = ах2 – 2х +25 касается оси Х?
  а) а=25 ; б) а=0 и а= 0,04 ; в) а=0,04.
 При каких значениях k уравнение (k - 2)x2 = (4 – 2k)x+3 = 0 имеет единственное решение? а) k=-5, k= -2 ; б) k=5 ; в) k=5, k= 2 .
 При каких значениях k уравнение kx2 – (k - 7)x + 9 =0 имеет два равных положительных корня? а) k=49, k= 1 ; б) k=1 ; в) k=49 .
 При каких значениях а уравнение ax2 - 6x+а = 0 имеет два различных корня? а) а ( - 3 ; 0)U(0; 3 ); б) при а ( - 3 ; 3) ;
в) с ( - ∞ ; - 3)U ( 3 ; +∞)

Слайд 5

Закрепление материала Используя, полученные знания, решить уравнения с условиями:

При каких значениях параметра

Закрепление материала Используя, полученные знания, решить уравнения с условиями: При каких значениях
а корни квадратного уравнения
х2 + (а + 1)х + 3 = 0 лежат по разные стороны от числа 2?
Решение. Рассмотрим функцию
f(x)= х2 + (а + 1)х + 3.
f(2)<0;
f(2)=4+2a+2+3=2a+9<0
2a<-9
a<–4.5
Ответ. a(–;–4.5)

Слайд 6

При каких значениях параметра а оба корня квадратного уравнения (2–a)x2-3ax+2a=0 больше ½.

Аf(M)>0
D>0
-В/2А>M
(2-а)(1/2-а/43а/2+2а)>0
9а²-8а(2-а)>0
3а/(2-а)>1/2
(2-а)(2/4+а/4)>0
А²-16а>0
3а/(2-а)-1/2>0

(2-а)(а+2)

При каких значениях параметра а оба корня квадратного уравнения (2–a)x2-3ax+2a=0 больше ½.
>0
а(а-16) >0
(6а-2+а)/(2-а) >0
ає(-2;2)
ає(-∞;0) υ(16;+∞)
(7а-2)/(2-а) >0
ає(-2;2)
ає(-∞;0) υ(16;+∞)
ає(2/7;2)
Ответ: решений нет

Слайд 7

Найти все значения параметра а, при которых оба корня квадратного уравнения x2-

Найти все значения параметра а, при которых оба корня квадратного уравнения x2-
6ax+(2-2a+9a2)=0 больше 3.

Аf(M)>0
D>0
-В/2А>М
9-18а+2-2а+9а²>0
36а²-8-8а-36а²>0
6а/2>3
9а²-20а+11>0
а+1>0
а>1

ає(-∞;1)υ(11/9;+∞)
а>-1
а>1
Ответ: ає(11/9 ;+∞)

Слайд 8

Найти все значения параметра а, которых оба корня квадратного уравнения x2+4ax+(1-2a+4a2)=0 меньше

Найти все значения параметра а, которых оба корня квадратного уравнения x2+4ax+(1-2a+4a2)=0 меньше
–1.

Аf(M)>0
D>0
-В/2А<М
1-4а+1-2а+4а²>0
16а²-4+8а-16а²>0
-4а/2<-1
2а²-3а+1>0
2а>1

ає(-∞;1/2)υ(1;+∞)
а>1/2
Ответ: ає(1 ;+∞)

Имя файла: - -Применение-свойств-квадратичной-функции-при-решении-уравнений-и-неравенств-с-параметром-Урок-по-алгебре-и-началам-анализа-в-11.pptx
Количество просмотров: 780
Количество скачиваний: 2