Свойство периодичности - презентация по Алгебре_

Содержание

Слайд 2

Периодические функции

В природе и технике часто встречаются явления, повторяющиеся по истечении некоторого

Периодические функции В природе и технике часто встречаются явления, повторяющиеся по истечении
промежутка времени.
Например, при вращении Земли вокруг Солнца её расстояние от солнца всё время меняется, но после полного оборота Земля оказывается на том же расстоянии от солнца, сто и год тому назад. Возвращается на своё место после полного оборота и лопасть турбины.
Такие периодические повторяющиеся процессы описываются периодическими функциями.

Слайд 3

Периодические функции

Периодическая функция ― функция, повторяющая свои значения через какой-то ненулевой период,

Периодические функции Периодическая функция ― функция, повторяющая свои значения через какой-то ненулевой
то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода).
Все тригонометрические функции являются периодическими.

Слайд 4

Периодические функции

Определение 1
Говорят, что функция y=f(x), x принадлежит Х имеет период Т,

Периодические функции Определение 1 Говорят, что функция y=f(x), x принадлежит Х имеет
если для любого x принадлежит Х выполняются равенства
f(x-T)=f(x)=f(x+T).
Из этого определения следует, что если функция с периодом Т определена в точке х, то она определена в точках х+Т ,х-Т.
Любая функция имеет период, равный нулю(при Т=0 равенство превращается в тождество
f(x-0)=f(x)=f(x+0)).

Слайд 5

Определение 2
Функцию, имеющую отличный от нуля период Т, называют периодической.
Если функция y=f(x),

Определение 2 Функцию, имеющую отличный от нуля период Т, называют периодической. Если
x принадлежит Х имеет период Т, то любое число, кратное Т (т.е. число вида kT, k принадлежит Z), также является её периодом.

Периодические функции

Слайд 6

Периодические функции

Периодическая функция имеет бесконечное множество различных периодов. В большинстве случаев среди

Периодические функции Периодическая функция имеет бесконечное множество различных периодов. В большинстве случаев
положительных периодов периодической функции есть наименьший . Его называют основным периодом этой функции, все остальные её периоды кратны основному периоду.

Слайд 7

Периодические функции

График периодической функции обладает следующей особенностью.
Если Т - основной

Периодические функции График периодической функции обладает следующей особенностью. Если Т - основной
период функции y=f(x), то для построения её графика достаточно построить ветвь графика на одном из промежутков длины Т, а затем выполнить параллельный перенос этой ветви вдоль оси х на +Т,+2Т,+3Т, … .
Чаще всего в качестве такого промежутка длины Т выбирают промежуток с концами в точках (-Т/2;0)и(Т/2;0).

Слайд 8

Периодические функции

Но не у всякой периодической функции есть основной период. Классический

Периодические функции Но не у всякой периодической функции есть основной период. Классический
пример - функция Дирихле y=d (x), где
1,если х- рациональное число;
d (x)= 0,если х- иррациональное число.

Слайд 9

Периодические функции

Любое рациональное число r является периодом этой функции.
В самом деле,

Периодические функции Любое рациональное число r является периодом этой функции. В самом
если х-рациональное число,
то х-r, x+r –рациональные числа, а потому
d (x-r)=d (x)=d (x+r)=1.
Если же х – иррациональное число, то
х-r, х+r – иррациональные числа, а потому
d (x-r)=d (x)=d (x+r) = 0.

Слайд 10

Периодические функции

Итак, любое рациональное число является периодом функции Дирихле.
Но среди положительных

Периодические функции Итак, любое рациональное число является периодом функции Дирихле. Но среди
рациональных чисел нет наименьшнго числа, значит,
у периодической функции Дирихле нет основного периода.
Имя файла: Свойство-периодичности---презентация-по-Алгебре_.pptx
Количество просмотров: 898
Количество скачиваний: 11