Содержание
- 2. Пример. Вычислить площадь фигуры, ограниченной линиями:
- 3. Решение: S
- 4. Находим координаты точки В: Тогда
- 5. 2 Пусть функция y=f(x) – неположительная и непрерывна на [a,b]. Отражая кривую y=f(x) относительно оси абсцисс,
- 6. Пример. Вычислить площадь фигуры, ограниченной линиями:
- 7. Решение:
- 8. SОАВ – это площадь над кривой ОАВ на отрезке [0;2]. Но эта кривая задается не одним
- 9. 3 Пусть функция y=f(x) – непрерывна на [a,b] и исходный отрезок можно разбить на определенное число
- 10. S S S
- 12. 4 Теорема. Пусть на [a,b] заданы непрерывные функции y=f1(x) и y=f2(x), такие что Тогда площадь фигуры,
- 13. Проиллюстрируем эту теорему графически. Рассмотрим несколько случаев. 1
- 16. 2
- 19. 3
- 22. 4 Общий случай. Этот случай сводится к рассмотренным случаям 1-3, если разбить отрезок [a,b] на элементарные
- 24. Пример. Вычислить площадь фигуры, ограниченной линиями:
- 26. Решение: Находим координаты точек пересечения линий: Следовательно, линии пересекаются в точках
- 27. 2. Вычисление объемов тел вращения Пусть функция y=f(x) –знакопостоянная и непрерывна на [a,b]. Найти объем тела
- 29. Тогда некоторое приближение для искомого объема даст сумма Так как каждое слагаемое это объем цилиндра с
- 30. Правая часть выражения представляет собой предел интегральной суммы функции Поэтому
- 31. Пример. Вычислить объем тела, полученного от вращения вокруг оси абсцисс фигуры, ограниченной линиями:
- 32. Решение:
- 34. Если заменить х на у, то получим формулу для вычисления объема тела, полученного от вращения криволинейной
- 35. Пример. Вычислить объем тела, полученного от вращения вокруг оси ординат фигуры, ограниченной линиями:
- 36. Решение:
- 38. Скачать презентацию