Параллельность_прямых_в_пространстве_2019

Содержание

Слайд 2

Три случая взаимного расположения прямых в пространстве

Три случая взаимного расположения прямых в пространстве

Слайд 3

Планиметрия

Стереометрия

Две прямые на плоскости называются параллельными, если они не пересекаются.

Две прямые в

Планиметрия Стереометрия Две прямые на плоскости называются параллельными, если они не пересекаются.
пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

aIIb

aIIb

Слайд 4

Две прямые в пространстве называются параллельными, если
1) они лежат в одной

Две прямые в пространстве называются параллельными, если 1) они лежат в одной
плоскости и
2) не пересекаются

a

b

Определение

Показать (1)

Слайд 5

Два отрезка называются параллельными, если они лежат на параллельных прямых.

a

b

Определение

АВ

Два отрезка называются параллельными, если они лежат на параллельных прямых. a b
II СD

FL II n

Показать (2)

Отрезок FL параллелен
прямой n

Отрезки АВ и СD параллельны

Слайд 6

А

Через точку, не лежащую на данной прямой, проходит только одна прямая,

А Через точку, не лежащую на данной прямой, проходит только одна прямая,
параллельная данной.

Повторим. ПЛАНИМЕТРИЯ. Аксиома параллельности.

а

b

Аксиома параллельности поможет доказать теорему о параллельных прямых

Слайд 7

Теорема

Через любую точку пространства, не лежащую на данной прямой, проходит прямая,

Теорема Через любую точку пространства, не лежащую на данной прямой, проходит прямая,
параллельная данной, и притом только одна.

М

a

b

Прямая и не лежащая
на ней точка определяют плоскость

Показать (2)

Слайд 8

Повторим. Следствие из аксиомы параллельности.

а

c

b

Это следствие из аксиомы параллельности поможет доказать

Повторим. Следствие из аксиомы параллельности. а c b Это следствие из аксиомы
лемму о параллельных прямых

Слайд 9

Лемма

Если одна из двух параллельных прямых
пересекает данную плоскость, то

Лемма Если одна из двух параллельных прямых пересекает данную плоскость, то и
и другая
прямая пересекает данную плоскость.

М

Показать (2)

a

?

Слайд 10

Повторим. Следствие из аксиомы параллельности.

Аналогичное утверждение имеет место и для трех

Повторим. Следствие из аксиомы параллельности. Аналогичное утверждение имеет место и для трех прямых в пространстве.
прямых в пространстве.

Слайд 11

a

b

с

Теорема

Если две прямые параллельны третьей прямой, то они параллельны.

aIIс, bIIс

a b с Теорема Если две прямые параллельны третьей прямой, то они

Докажем, что aIIb

1) Точка К и прямая а определяют плоскость.

Докажем, что а и b
Лежат в одной плоскости
не пересекаются

2) Используя метод от противного объясните почему прямые а и b не пересекаются.

Слайд 12

Q

А

С

В

D

N

M

P

№ 17.
Точки М, N, P и Q – середины отрезков BD,

Q А С В D N M P № 17. Точки М,
CD, AB и АС.
Докажите, что PMNQ – параллелограмм.
Найдите периметр MNQP.

12 см

14 см

Слайд 13

А

В

С

Е

F

K

M

Треугольник АВС и квадрат АEFC не лежат в одной
плоскости. Точки

А В С Е F K M Треугольник АВС и квадрат АEFC
К и М – середины отрезков АВ и ВС соответственно. Докажите, что КМ II EF.
Найдите КМ, если АЕ=8см.

8см

Слайд 14

А

В

С

С

D

K

M

Квадрат АВСD и трапеция KMNL не лежат в одной
плоскости. Точки

А В С С D K M Квадрат АВСD и трапеция KMNL
A и D – середины отрезков KM и NL соответственно. Докажите, что КL II BC.
Найдите BC, если KL=10см, MN= 6 см.

N

L

10см

6 см

Имя файла: Параллельность_прямых_в_пространстве_2019.pptx
Количество просмотров: 97
Количество скачиваний: 6