Координаты вектора

Слайд 2

Свойства координат векторов:

1. Координаты нулевого вектора в любом из базисов равны нулю.
2.

Свойства координат векторов: 1. Координаты нулевого вектора в любом из базисов равны
Координаты вектора в данном базисе определяются однозначно.
3. При сложении векторов их соответствующие координаты складываются.
4. При умножении вектора на число все его координаты умножаются на это число.
5. Координаты линейной комбинации векторов равны таким же линейным комбинациям соответствующих координат слагаемых.
*Базис - упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.

Слайд 3

Скалярное и векторное произведение векторов.

Скалярным произведением двух векторов называется число, равное произведению

Скалярное и векторное произведение векторов. Скалярным произведением двух векторов называется число, равное
их модулей на косинус угла между векторами.
Основные свойства скалярного произведения:
1. Переместительное свойство
2. Распределительное свойство
3. Сочетательное свойство относительно числового множителя
4. Скалярное произведение обращается нуль в том и только том случае, когда векторы перпендикулярны
5. Так как модуль вектора, число неотрицательное, то знак скалярного произведения определяется знаком

Слайд 4

Пример 1. Найти скалярное произведение векторов a и b, если:
Решение:
Известны длины векторов

Пример 1. Найти скалярное произведение векторов a и b, если: Решение: Известны
и угол между ними, т.е. следует использовать формулу
Подставим:
Замечание: угол между векторами острый – скалярное произведение положительно.
Ответ:
Пример 2.
Решение:
Известны длины векторов и то, что они сонаправлены, т.е. они параллельны или лежат на одной прямой и направлены в одну сторону.

, a и b сонаправлены.

Угол между ними равен нулю. Используем ту же формулу

Подставим:

Ответ: 5 .

Слайд 5

Задачи для самостоятельного решения:

Найти скалярное произведение векторов a и b, если:
1)
2)
3)

Задачи для самостоятельного решения: Найти скалярное произведение векторов a и b, если:
См. на след. слайде.
Имя файла: Координаты-вектора.pptx
Количество просмотров: 43
Количество скачиваний: 0