Содержание
- 2. Теорема Муавра-Лапласа При большом числе испытаний n в схеме Бернулли число успехов k имеет приближенно нормальное
- 3. Теорему можно использовать для приближенного расчета вероятности того, что число успехов лежит в заданном диапазоне При
- 4. Пример При данном технологическом процессе 90% всей произведенной продукции является высшим сортом. Произведено 4000 изделий. Какова
- 5. Проводится n=4000 испытаний. Успех – изделие высшего сорта, p=0,9, q=0,1. По условию задачи, надо найти Решение:
- 6. Проводится n=4000 испытаний. Успех – изделие высшего сорта, p=0,9, q=0,1. По условию задачи, надо найти Решение:
- 7. Проводится n=4000 испытаний. Успех – изделие высшего сорта, p=0,9, q=0,1. По условию задачи, надо найти Решение:
- 8. Проводится n=4000 испытаний. Успех – изделие высшего сорта, p=0,9, q=0,1. По условию задачи, надо найти В
- 9. В институте обучается 1000 студентов. В столовой имеется 105 посадочных мест. Каждый студент отправляется в столовую
- 10. Проводится n=1000 испытаний. Успех – поход в столовую p=0,1, q=0,9. По условию задачи, надо найти Решение:
- 11. В институте обучается 1000 студентов. В столовой имеется 105 посадочных мест. Каждый студент отправляется в столовую
- 12. Проводится n=1000 испытаний. Успех – поход в столовую p=0,1, q=0,9. По условию задачи, надо найти Решение:
- 13. Решение в Excel =НОРМРАСП(105;100;9.487;1)
- 14. В институте обучается 1000 студентов. В столовой имеется 105 посадочных мест. Каждый студент отправляется в столовую
- 15. Пусть в столовой М мест. По условию задачи, Решение:
- 16. Находим по таблице Лапласа 116 мест
- 18. Скачать презентацию