Физический и геометрический смысл производной

Слайд 3

Физический смысл производной

Если материальная точка движется по закону S (t), то скорость

Физический смысл производной Если материальная точка движется по закону S (t), то
её движения V (t) в момент времени t равна производной S‘ (t), то есть V (t) = S‘ (t).
Производная от скорости – ускорение a (t) = V‘ (t), то есть ускорение равно второй производной от функции a (t) = V‘ (t) = S“ (t).

Слайд 4

Задачи на физический смысл производной

№1 Тело движется по прямой так, что расстояние

Задачи на физический смысл производной №1 Тело движется по прямой так, что
от начальной точки изменяется по закону S = 5t +0,2t² -6 (м), где t – время движения в секундах. Найдите скорость тела через 5 секунд после начала движения.

Слайд 5

№2 Тело движется по прямой так, что расстояние от начальной точки изменяется

№2 Тело движется по прямой так, что расстояние от начальной точки изменяется
по закону S = 2t³ - 12t² + 7 (м), где t – время движения в секундах. Через сколько секунд после начала движения ускорение тела будет равно 36 м/с²?
№3 Две материальные точки движутся по законам S1 = 2,5t² -6t + 1; S2 =0,5t² +2t -3. В какой момент времени их скорости будут равны?

Слайд 6

Решение задач

№1 V(t) = S‘(t) = 5+0,6t²; V(5) = 5+0,6*5² = 20

Решение задач №1 V(t) = S‘(t) = 5+0,6t²; V(5) = 5+0,6*5² =
(м/с)
№2 V(t) = S‘(t) = 6t² -24t; a(t) = V‘(t) = S“(t) = 12t – 24; По условию a(t) = 36; то есть 12t – 24 = 36; t = 5 (c)
№3 V1(t) = S‘1(t) = 5t - 6; V2(t) = S‘2(t) = t+ 2; По условию V1(t) =V2(t); то есть 5t – 6 = t +2; t = 2 (c)

Слайд 7

Геометрический смысл производной

Геометрический смысл производной состоит в том, что значение производной

Геометрический смысл производной Геометрический смысл производной состоит в том, что значение производной
функции y = f (x) в точке x равно угловому коэффициенту касательной к графику функции в точке с абсциссой x.

Слайд 8

Задачи на угловой коэффициент касательной

№1 Дана функция f (x) =3x²+5x-6. Найдите

Задачи на угловой коэффициент касательной №1 Дана функция f (x) =3x²+5x-6. Найдите
координаты точки её графика, в которой угловой коэффициент касательной к нему равен «-7».
№2 Найдите угловой коэффициент касательной, проведённой к графику функции f (x) = 4Cos x+3 в точке с абсциссой x = -/3.

Слайд 9

Решение задач

№1 Ккас = f ‘(x) = 6x + 5; По условию

Решение задач №1 Ккас = f ‘(x) = 6x + 5; По
Ккас = -7, то есть 6х + 5 = -7; х = -2; у = f ‘(-2) = 3*(-2)² + 5*(-2) – 6 = -4; (-2; -4) – точка касания
№2 Ккас = f ‘(x) = 6*Cosx + Sinx; f ‘(/3) = 6 *Cos(/3) + Sin(/3) = 6*1/2 + √3/2 = (6 + √3)/2 ; Ккас = (6 + √3)/2 ;

Слайд 10

Зависимость знаков производной от угла наклона касательной

Зависимость знаков производной от угла наклона касательной
Имя файла: Физический-и-геометрический-смысл-производной.pptx
Количество просмотров: 30
Количество скачиваний: 0