Решение тригонометрических уравнений

Слайд 2

Уравнения, решаемые с помощью условия равенства одноимённых тригонометрических функций

Многие тригонометрические уравнения могут

Уравнения, решаемые с помощью условия равенства одноимённых тригонометрических функций Многие тригонометрические уравнения
быть приведены к равенству одноимённых тригонометрических функций.
Такие уравнения решаются на основании условий равенства одноимённых тригонометрических функций, т. е. тех условий, которым должны удовлетворять два угла: α и β, если 1) sin α = sin β, 2) cos α = cos β,
3) tg α = tg β.

Слайд 3

Решение уравнения вида sin α = sin β

Для того, чтобы синусы

Решение уравнения вида sin α = sin β Для того, чтобы синусы
двух углов были равны, необходимо и достаточно, чтобы:
α – β = 2n или α + β = (2n+1) , где n целое число.
Решить уравнение: sin 3x = sin 5x
Решение. На основании условия равенства двух синусов имеем: 1) 5х-3х = 2κ; 2х = 2κ, х= κ, где κ целое число.
2) 3х+5х = (2κ + 1), х = (2κ+1) ̷ 8, где κ целое число.
Ответ: х= к; х = (2к+1)  ̷ 8, где к целое число.

Слайд 5

Решение уравнения вида cosx = cosy

Для того чтобы косинусы двух углов были

Решение уравнения вида cosx = cosy Для того чтобы косинусы двух углов
равны, необходимо и достаточно выполнение одного из следующих условий:
1) х - у = 2n или х + у = 2n, где n-целое число
2) Решить уравнение: cos 3x = cos 5x
Решение: 5х – 3х = 2n,
2х = 2n,
х = n, где n- целое число
или 5х + 3х = 2n,
8х = 2n,
х = ¼ n
Ответ: ¼ n, где n целое число.

Слайд 6

Решение уравнения вида tgx = tgy

Для того, чтобы тангенсы двух углов были

Решение уравнения вида tgx = tgy Для того, чтобы тангенсы двух углов
равны, необходимо и достаточно одновременное выполнение двух условий: 1) тангенс каждого из двух углов существует;
2) разность этих углов равна числу , умноженному на целое число.

Слайд 7

Решить уравнение : tg (5x +  ̷ 3) = ctg 3x

Преобразуем

Решить уравнение : tg (5x +  ̷ 3) = ctg 3x
уравнение и получим tg (5x +  ̷ 3) = tg (  ̷ 2 – 3x ).
На основании условия равенства тангенсов двух углов имеем:
5x +  ̷ 3 -  ̷ 2 + 3x = n;
8x =  ̷ 6 + n, x = ( 6n +1 )  ̷ 48, где n- целое
число. При каждом значении x из этой
совокупности каждая из частей уравнения
существует.
Ответ: (6n + 1 )  ̷ 48, где n – целое число.

Слайд 8

Некоторые виды тригонометрических уравнений

Некоторые виды тригонометрических уравнений

Слайд 9

Уравнения, правая часть которых равна нулю, решаются разложением левой части на множители.

Уравнения, правая часть которых равна нулю, решаются разложением левой части на множители.
При решении нужно помнить, что произведение равно нулю, если один из множителей равен нулю, а другие множители при этом не теряют смысла.
Имя файла: Решение-тригонометрических-уравнений.pptx
Количество просмотров: 44
Количество скачиваний: 0