то АР = ВР и AQ = BQ. Следовательно, ∆APQ = ∆BPQ по трем сторонам. Поэтому угол APQ = углу BPQ.
Сравним ∆APL и ∆BPL. Они равны по двум сторонам и углу между ними (AP = BP, PL – общая сторона, угол APL = углу BPL), поэтому AL = BL. Но это означает, что треугольники ABL равнобедренный и его медиана LO является высотой, т. е. l перпендикулярна к а. Так как l ║ m и l перпендикулярна а, то m перпендикулярна а (по лемме о перпендикулярности двух параллельных прямых к третей). Итак, прямая а перпендикулярна к любой прямой m плоскости α, т. е. а перпендикулярна α.