Пирамида, вписанная в конус

Содержание

Слайд 2

Упражнение 1

Найдите сторону основания правильной треугольной пирамиды, вписанной в конус, радиус основания

Упражнение 1 Найдите сторону основания правильной треугольной пирамиды, вписанной в конус, радиус основания которого равен 1.
которого равен 1.

Слайд 3

Упражнение 2

Найдите сторону основания правильной четырехугольной пирамиды, вписанной в конус, радиус основания

Упражнение 2 Найдите сторону основания правильной четырехугольной пирамиды, вписанной в конус, радиус основания которого равен 1.
которого равен 1.

Слайд 4

Упражнение 3

Найдите сторону основания правильной шестиугольной пирамиды, вписанной в конус, радиус основания

Упражнение 3 Найдите сторону основания правильной шестиугольной пирамиды, вписанной в конус, радиус
которого равен 1.

Ответ: 1.

Слайд 5

Пирамида, описанная около конуса

Пирамида называется описанной около конуса, если ее основание описано

Пирамида, описанная около конуса Пирамида называется описанной около конуса, если ее основание
около основания конуса, а вершина совпадает с вершиной конуса. При этом конус называется вписанным в пирамиду.
В пирамиду можно вписать конус тогда и только тогда, когда в ее основание можно вписать окружность.

Слайд 6

Упражнение 1

Найдите сторону основания правильной треугольной пирамиды, описанной около конуса, радиус основания

Упражнение 1 Найдите сторону основания правильной треугольной пирамиды, описанной около конуса, радиус основания которого равен 1.
которого равен 1.

Слайд 7

Упражнение 2

Найдите сторону основания правильной четырехугольной пирамиды, описанной около конуса, радиус основания

Упражнение 2 Найдите сторону основания правильной четырехугольной пирамиды, описанной около конуса, радиус
которого равен 1.

Ответ: 2.

Слайд 8

Упражнение 3

Найдите сторону основания правильной шестиугольной пирамиды, описанной около конуса, радиус основания

Упражнение 3 Найдите сторону основания правильной шестиугольной пирамиды, описанной около конуса, радиус основания которого равен 1.
которого равен 1.

Слайд 9

Сфера, вписанная в конус

Сфера называется вписанной в конус, если она касается его

Сфера, вписанная в конус Сфера называется вписанной в конус, если она касается
основания и боковой поверхности (касается каждой образующей). При этом конус называется описанным около сферы.

В любой конус (прямой, круговой) можно вписать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, вписанной в треугольник, являющийся осевым сечением конуса.

Напомним, что радиус r окружности, вписанный в треугольник, находится по формуле
где S – площадь, p – полупериметр треугольника.

Слайд 10

Упражнение 1

В конус, радиус основания которого равен 1, а образующая равна 2,

Упражнение 1 В конус, радиус основания которого равен 1, а образующая равна
вписана сфера. Найдите ее радиус.

Слайд 11

Упражнение 2

В конус, радиус основания которого равен 2, вписана сфера радиуса 1.

Упражнение 2 В конус, радиус основания которого равен 2, вписана сфера радиуса 1. Найдите высоту конуса.
Найдите высоту конуса.

Слайд 12

Упражнение 3

Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под

Упражнение 3 Радиус основания конуса равен 1. Образующая наклонена к плоскости основания
углом 45о. Найдите радиус вписанной сферы.

Слайд 13

Упражнение 4

Высота конуса равна 8, образующая 10. Найдите радиус вписанной сферы.

Упражнение 4 Высота конуса равна 8, образующая 10. Найдите радиус вписанной сферы.

Слайд 14

Упражнение 5

Можно ли вписать сферу в наклонный конус?

Ответ: Нет.

Упражнение 5 Можно ли вписать сферу в наклонный конус? Ответ: Нет.

Слайд 15

Сфера, вписанная в усеченный конус

Сфера называется вписанной в усеченный конус, если она

Сфера, вписанная в усеченный конус Сфера называется вписанной в усеченный конус, если
касается его оснований и боковой поверхности (касается каждой образующей). При этом усеченный конус называется описанным около сферы.

В усеченный конус можно вписать сферу, если в его осевое сечение можно вписать окружность. Радиус этой окружности будет равен радиусу вписанной сферы.

Слайд 16

Упражнение 1

В усеченный конус, радиусы оснований которого равны 2 и 1, вписана

Упражнение 1 В усеченный конус, радиусы оснований которого равны 2 и 1,
сфера. Найдите радиус сферы и высоту усеченного конуса.

Слайд 17

Упражнение 2

В усеченный конус, радиус одного основания которого равен 2, вписана сфера

Упражнение 2 В усеченный конус, радиус одного основания которого равен 2, вписана
радиуса 1. Найдите радиус второго основания.

Решение. Пусть A1O1= 2. Обозначим r = A2O2. Имеем: A1A2 = 2+r, A1C = 2 – r. По теореме Пифагора, имеет место равенство из которого следует, что выполняется равенство Решая полученное уравнение относительно r, находим

Слайд 18

Упражнение 3

В усеченном конусе радиус большего основания равен 2, образующая наклонена к

Упражнение 3 В усеченном конусе радиус большего основания равен 2, образующая наклонена
плоскости основания под углом 60о. Найдите радиус вписанной сферы.

Слайд 19

Упражнение 4

Образующая усеченного конуса равна 2, площадь осевого сечения 3. Найдите радиус

Упражнение 4 Образующая усеченного конуса равна 2, площадь осевого сечения 3. Найдите радиус вписанной сферы.
вписанной сферы.

Слайд 20

Упражнение 5

Можно ли вписать сферу в усеченный наклонный конус.

Ответ: Нет.

Упражнение 5 Можно ли вписать сферу в усеченный наклонный конус. Ответ: Нет.

Слайд 21

Сфера, описанная около конуса

Сфера называется описанной около конуса, если вершина и окружность

Сфера, описанная около конуса Сфера называется описанной около конуса, если вершина и
основания конуса лежат на сфере. При этом конус называется вписанным в сферу.

Около любого конуса (прямого, кругового) можно описать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, описанной около треугольника, являющимся осевым сечением конуса.

Напомним, что радиус R окружности, описанной около треугольника, находится по формуле
где S – площадь, a, b, c – стороны треугольника.

Слайд 22

Упражнение 1

Около конуса, радиус основания которого равен 1, а образующая равна 2,

Упражнение 1 Около конуса, радиус основания которого равен 1, а образующая равна
описана сфера. Найдите ее радиус.

Слайд 23

Упражнение 2

Около конуса, радиус основания которого равен 4, описана сфера радиуса 5.

Упражнение 2 Около конуса, радиус основания которого равен 4, описана сфера радиуса
Найдите высоту h конуса.

Слайд 24

Упражнение 3

Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под

Упражнение 3 Радиус основания конуса равен 1. Образующая наклонена к плоскости основания
углом 45о. Найдите радиус описанной сферы.

Слайд 25

Упражнение 4

Высота конуса равна 8, образующая 10. Найдите радиус описанной сферы.

Упражнение 4 Высота конуса равна 8, образующая 10. Найдите радиус описанной сферы.

Слайд 26

Упражнение 5

Можно ли описать сферу около наклонного конуса?

Упражнение 5 Можно ли описать сферу около наклонного конуса?

Слайд 27

Сфера, описанная около усеченного конуса

Сфера называется описанной около усеченного конуса, если окружности

Сфера, описанная около усеченного конуса Сфера называется описанной около усеченного конуса, если
оснований усеченного конуса лежат на сфере. При этом усеченный конус называется вписанным в сферу.

Около усеченного конуса можно описать сферу, если около его осевого сечения можно описать окружность. Радиус этой окружности будет равен радиусу описанной сферы.

Слайд 28

Упражнение 1

Около усеченного конуса, радиусы оснований которого равны 2 и 1, а

Упражнение 1 Около усеченного конуса, радиусы оснований которого равны 2 и 1,
образующая равна 2, описана сфера. Найдите ее радиус.

Слайд 29

Упражнение 2

Радиус меньшего основания усеченного конуса равен 1, образующая равна 2 и

Упражнение 2 Радиус меньшего основания усеченного конуса равен 1, образующая равна 2
составляет угол 45о с плоскостью другого основания. Найдите радиус описанной сферы.

Слайд 30

Упражнение 3

Радиус одного основания усеченного конуса равен 4, высота 7, радиус описанной

Упражнение 3 Радиус одного основания усеченного конуса равен 4, высота 7, радиус
сферы 5. Найдите радиус второго основания усеченного конуса.

Слайд 31

Упражнение 4

Найдите радиус сферы, описанной около усеченного конуса, радиусы оснований которого равны

Упражнение 4 Найдите радиус сферы, описанной около усеченного конуса, радиусы оснований которого
2 и 4, а высота равна 5.
Имя файла: Пирамида,-вписанная-в-конус.pptx
Количество просмотров: 849
Количество скачиваний: 6