Содержание
- 2. Ch03_ 3.1 Introduction to Determinants Definition The determinant of a 2 × 2 matrix A is
- 3. Ch03_ Definition Let A be a square matrix. The minor of the element aij is denoted
- 4. Ch03_ Example 2 Solution Determine the minors and cofactors of the elements a11 and a32 of
- 5. Ch03_ Definition The determinant of a square matrix is the sum of the products of the
- 6. Ch03_ Example 3 Evaluate the determinant of the following matrix A. Solution
- 7. Ch03_ Theorem 3.1 The determinant of a square matrix is the sum of the products of
- 8. Ch03_ Example 5 Evaluate the determinant of the following 4 × 4 matrix. Solution
- 9. Ch03_ Example 6 Solve the following equation for the variable x. Solution There are two solutions
- 10. Ch03_ Computing Determinants of 2 × 2 and 3 × 3 Matrices
- 11. Ch03_ Homework Exercises will be given by the teachers of the practical classes.
- 12. Ch03_ Let A be an n × n matrix and c be a nonzero scalar. If
- 13. Ch03_ Example 1 Solution Evaluate the determinant
- 14. Ch03_ Example 2 If |A| = 12 is known. Evaluate the determinants of the following matrices.
- 15. Ch03_ Theorem 3.3 Let A be a square matrix. A is singular if all the elements
- 16. Ch03_ Example 3 Show that the following matrices are singular. Solution All the elements in column
- 17. Ch03_ Theorem 3.4 Let A and B be n × n matrices and c be a
- 18. Ch03_ Example 4 If A is a 2 × 2 matrix with |A| = 4, use
- 19. Ch03_ Example 6 Prove that if A and B are square matrices of the same size,
- 20. Ch03_ Homework Exercises will be given by the teachers of the practical classes. Solution
- 21. Ch03_ 3.3 Numerical Evaluation of a Determinant Definition A square matrix is called an upper triangular
- 22. Ch03_ Example 1 Numerical Evaluation of a Determinant
- 23. Ch03_ Numerical Evaluation of a Determinant Example 2 Evaluation the determinant.
- 24. Ch03_ Example 3 Evaluation the determinant. Solution
- 25. Ch03_ Example 4 Evaluation the determinant. Solution
- 26. Ch03_ Example 5 Evaluation the determinant. Solution
- 27. Ch03_ 3.4 Determinants, Matrix Inverse, and Systems of Linear Equations Definition Let A be an n
- 28. Ch03_ Example 1 Give the matrix of cofactors and the adjoint matrix of the following matrix
- 29. Ch03_ Theorem 3.6 Let A be a square matrix with |A| ≠ 0. A is invertible
- 30. Ch03_ ∴ A⋅ adj(A) = |A|In Proof of Theorem 3.6 If i ≠ j, let row
- 31. Ch03_ Theorem 3.7 A square matrix A is invertible if and only if |A| ≠ 0.
- 32. Ch03_ Example 2 Use a determinant to find out which of the following matrices are invertible.
- 33. Ch03_ Example 3 Use the formula for the inverse of a matrix to compute the inverse
- 34. Ch03_ Homework Exercises will be given by the teachers of the practical classes. Exercise Show that
- 35. Ch03_ Theorem 3.8 Let AX = B be a system of n linear equations in n
- 36. Ch03_ Example 4 Determine whether or not the following system of equations has an unique solution.
- 37. Ch03_ Theorem 3.9 Cramer’s Rule Let AX = B be a system of n linear equations
- 38. Ch03_ xi, the ith element of X, is given by Proof of Cramer’s Rule
- 39. Ch03_ Example 5 Solving the following system of equations using Cramer’s rule.
- 40. Ch03_ Giving Cramer’s rule now gives
- 41. Ch03_ Example 6 Determine values of λ for which the following system of equations has nontrivial
- 42. Ch03_
- 44. Скачать презентацию









































Домашняя математика
Арифметическая прогрессия в истории
Учимся писать цифры
Коллинеарные векторы
user_file_543418187c2d7 (1)
Математический турнир Умники и умницы
Деление обыкновенных дробей. 5 класс
Решение задач по теме: Параллелограммы вокруг нас (2)
Математика вокруг нас
Делители и кратные
Периметр прямоугольника
Квадратные уравнения и знаки его корней
Второй и третий признаки равенства треугольников. LOGO
Теорема Фейербаха
1155274
Лекция 1 (1)
Безопасное колесо и законы математики
Индивидуальное задание №8. Построение линии пересечения тора и конуса
Презентация на тему Владимир Модестович Брадис
Презентация на тему Разложение многочленов на множители
Презентация на тему Тесты по математике
Геометрические приложения определенного интеграла
Поверхностные интегралы первого рода
Решение задач на нахождение площади фигур. 6 класс
Решение логарифмических уравнений с применение свойств логарифма
Конструирование урока математики с использованием ИКТ Миронова М.Г., методист кафедры математического образования ГОУ ДПО «Са
Прибавить и вычесть число 3. Решение текстовых задач
Дизъюнктивные нормальные формы (ДНФ). СДНФ