Векторы (9 класс) Задачи

Слайд 2

На стороне ВС ромба АВСD лежит точка К так, что ВК=КС,

На стороне ВС ромба АВСD лежит точка К так, что ВК=КС, О-
О- точка пересечения диагоналей. Выразите векторы АО, АК, КD через векторы а= АВ и b=АD

В

К

D

С

А

О

b

а

Выразим АО, АО-половина
диагонали АС

Вектор АС = а + b (по правилу пар-ма)

Выразим АК

Значит АО=½ АС

По свойству ромба АD=ВС, АD//ВС
b= ВС , ВК=½ВС, ВК=½ b

АК= а + ½ b

Выразим КD

Используем векторы b и АК

КD= b - (а + ½ b)= ½b - a

АО=½∙(а + b)

Слайд 3

В равнобедренной трапеции высота делит большее основание на отрезки, равные 6 и

В равнобедренной трапеции высота делит большее основание на отрезки, равные 6 и
12см. Найдите среднюю линию трапеции.

Дано: АВСD –трапеция, АD-большее основание СН-высота, НD=6см, АН=12см
Найти: КL-средняя линия

Трап. равнобедренная, <А=

Чтобы найти ср. линию надо

АD= 6+12=18cм.

ВС=МН- как отрезки прямых заключенных между параллельными прямыми ВМ//CH

Проведем высоту ВМ

(т.к. ВМ┴АD, СН┴АD)

АМ=НD=6 т.к. ∆ВМА=∆СНD

ΔВМА=ΔСНD равны по гипотенузе ВА=СD и острому углу <А=

Значит МН=12-6=6см

МН=ВС=6см

Ответ: 12см

Найдем ВС.

Решение:

Слайд 4

В равнобедренной трапеции один из углов равен 60º, боковая сторона равна 10см,

В равнобедренной трапеции один из углов равен 60º, боковая сторона равна 10см,
а меньшее основание 6 см. Найдите среднюю линию трапеции.

Дано: АВСD –трапеция, <НDC=60º АВ=10см, ВС=6см.
Найти: КL-средняя линия

Трап. Равнобедренная, <А=

Чтобы найти ср. линию надо

Рассмотрим ∆ СНD-прямоугольный

Проведем ВМ-высота

ВС=МН=6см как отрезки заключенные между пар-ми прямыми. АМ-?

∆АМВ=∆DHC по гипотенузе и острому углу. Значит АМ=НD=5см

AD=АМ+МН+НD=5+6+5=16см.

Решение:

НD=5

Слайд 5

Дано: ABCD- квадрат. АВ=а, АС=b
Найти: ВО, ВР, РА
Решение:

На сторонах СD квадрата

Дано: ABCD- квадрат. АВ=а, АС=b Найти: ВО, ВР, РА Решение: На сторонах
АВСD лежит точка P так, что СP=PD, О-точка пересечения диагоналей. Выразите векторы ВО, ВР, РА через векторы а=ВА, b=ВС

ВО=½ВD

ВD=ВА+ВС

ВD=а + b

ВО=½(а +b)

СD=ВА=а,

СР=½СD,

СР=½СD=½ a

BР=ВС+ СР

BР=b+½а

РА=РD+DA

РD=½CD

РD=½а

DА и ВС –противоположные, DA=-b

РА=½а + (-b)

РА=½а -b

или РА=ВА-ВР

РА=а – (b +½а)=½а- b

DA=-b

Слайд 6

Дано: ABCD- квадрат. АВ=а, АС=b
Найти: ВО, ВЕ
Решение:

На сторонах СD квадрата АВСD

Дано: ABCD- квадрат. АВ=а, АС=b Найти: ВО, ВЕ Решение: На сторонах СD
лежит точка Е так, что СЕ=ЕD, О-точка пересечения диагоналей. Выразите векторы ВО, ВЕ через векторы а=ВА, b=АС

АО=½АС

АО=½b

ВА+АО=ВО

ВО=а + ½b

СЕ=½СD, СD=ВА=а

СЕ=½ a,

ВЕ=ВС+СЕ,

ВЕ= (а + b)+½а

ВС=ВА+АС= а + b

Имя файла: Векторы-(9-класс)-Задачи.pptx
Количество просмотров: 47
Количество скачиваний: 1