Презентации, доклады, проекты по геометрии

ЗАДАЧИ С ИНСТРУКЦИЕЙ ДЛЯ РЕШЕНИЯ ПО ТЕМЕ ОБЪЕМ ПИРАМИДЫ
ЗАДАЧИ С ИНСТРУКЦИЕЙ ДЛЯ РЕШЕНИЯ ПО ТЕМЕ ОБЪЕМ ПИРАМИДЫ
Необходимые формулы и теоремы Площадь треугольника можно вычислить по формулам Площадь прямоугольного треугольника можно вычислить по формуле Объем пирамиды V=1/3SоснH Медианы в треугольнике точкой пересечения делятся в отношении 2:1 начиная от вершины Площадь квадрата или ромба S=1/2d1d2. Площадь ромба, параллелограмма S=ah Радиус окружности описанной около треугольника можно вычислить по формуле Центр окружности,описанной около прямоугольного треугольника, расположен в середине гипотенузы №1 №2 №3 №4 №5 №6 №7 А В С D О М N №1 Дано: DABC- правильная пирамида АВ=3, AD=2√3 Найти:V Решение: 1. Учтите, что в основании равносторонний треугольник.Найдите площадь основания. 2. Из треугольника АМС найдите медиану МС. 3. Вспомните свойство точки пересечения медиан. Найдите длину АС. 4. Из треугольника DOC найдите высоту пирамиды DO. 5. Найдите объем пирамиды. Предложите свое решение. 3 2√3
Продолжить чтение
Пифагоровы штаны во все стороны равны
Пифагоровы штаны во все стороны равны
Это язвительное замечание (которое в полном виде имеет продолжение: чтобы это доказать, нужно снять и показать), придуманное кем-то, по-видимому, потрясенным внутренним содержанием одной важной теоремы евклидовой геометрии, как нельзя точно раскрывает отправную точку, из которой цепь совсем несложных размышлений быстро приводит к доказательству теоремы, а также к еще более значимым результатам. Теорема эта, приписываемая древнегреческому математику Пифагору Самосскому (6 век до нашей эры), известна чуть ли не каждому школьнику и звучит так: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Пожалуй, многие согласятся, что геометрическая фигура, обозванная шифровкой "пифагоровы штаны на все стороны равны", называется квадратом. Ну и с улыбкой на лице добавим безобидной шутки ради, что имелось в виду в продолжении шифрованного сарказма. Итак, "чтобы это доказать, нужно снять и показать". Ясно, что "это" - под местоимением подразумевалась непосредственно теорема, "снять" - это получить в руки, взять названную фигуру, "показать" - имелось в виду слово "покасать", привести в соприкосновение какие-то части фигуры. Вообще "пифагоровыми штанами" окрестили напоминавшую по виду штаны графическую конструкцию, получавшуюся на чертеже Евклида при весьма сложном доказательстве им теоремы Пифагора. Когда нашлось доказательство проще, быть может, какой-то рифмоплет сочинил эту скороговорку-подсказку, чтобы не запамятовать начало подхода к доказательству, а народная молва уж разнесла ее по свету как пустую поговорку.
Продолжить чтение
Нахождение угла между скрещивающимися прямыми
Нахождение угла между скрещивающимися прямыми
Нахождение угла между скрещивающимися прямыми Данная тема актуальна, так как подобные задачи требуют развитого абстрактного мышления. Задачи, представленные ниже, чаще всего вызывают затруднения при решении у учащихся. Наглядное решение позволяет лучше усвоить приемы решения таких задач. Аргументы. 1). Определение скрещивающихся прямых. 2). Определение угла между скрещивающимися прямыми. 3). Признак скрещивающихся прямых. 4). Теорема Пифагора. 5). Свойство высоты равнобедренного треугольника, проведенной к основанию. 6). Определение правильной призмы. 7). Определение синуса острого угла прямоугольного треугольника. 8). Определение косинуса острого угла прямоугольного треугольника. 9). Определение правильного многоугольника. 10). Теорема о сумме углов выпуклого многоугольника. 11). Свойство окружности, описанной около правильного шестиугольника.
Продолжить чтение