Пирамиды
Что такое? Пирамидой ( SABCD ) называется многогранник, который состоит из плоского многоугольника - основания пирамиды ( ABCD ), точка S, не лежащая в плоскости основания, - вершиной пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания. Треугольники SAB, SBC, SCD, SDA - боковые грани. Прямые SA, SB, SC, SD - боковые ребра пирамиды. Перпендикуляр SO, опущенный из вершины на основание, называется высотой пирамиды и обозначается Н. Пирамида называется правильной, если ее основание - правильный многоугольник, а высота ее проходит через центр основания. Боковые грани правильной пирамиды - равнобедренные треугольники, равные между собой. Высота боковой грани правильной пирамиды - апофема пирамиды. Треугольная пирамида называется тетраэдром. Правильная пирамида Отметим некоторые свойства правильной n-угольной пирамиды на примере треугольной пирамиды.Как известно центр правильного треугольника совпадает с центром вписанной и описанной окого него окружности. Поэтому отрезки АО, ВО и СО равны как радиусы.
Поэтому прямоугольные треугольники АОМ, ВОМ и СОМ равны по двум катетам (МО-общая). Из равенства этих треугольников следует равенство соответствующих сторон: АМ=ВМ=СМ
Свойство 1: В правильной n-угольной пирамиде все боковые ребра равны между собой.
Из равенства ребер следует и равенство боковых граней. Треугольники АВМ, ВСМ и АСМ равны по трем сторонам. Свойство 2: Все боковые грани правильной n-угольной пирамиды суть равные равнобедренные треугольники, поэтому все плоские углы при вершине равны, все плоские углы при основании равны.
Из равенства прямоугольных треугольников ОРМ, ОТМ и ОКМ (ОТ=ОР=ОК как радиусы вписанной окружности; МО - общая) следует равенство всех двугранных углов при основании пирамиды РОРМ=РОТМ=РОКМ Свойство 3: В правильной n-угольной пирамиде все двугранные углы при основании равны.