Топология
Общие сведения Лента Мёбиуса — поверхность с одной стороной и одним краем; пример объекта, изучаемого в топологии Топология (от др.-греч. τόπος — место и λόγος — слово, учение) — раздел математики, изучающий в самом общем виде явление непрерывности, в частности свойства пространств, которые остаются неизменными при непрерывных деформациях, например, связность, ориентируемость. В отличие от геометрии, в топологии не рассматриваются метрические свойства объектов (например, расстояние между парой точек). Например, с точки зрения топологии, кружка и бублик (полноторий) неотличимы. Весьма важными для топологии являются понятия гомеоморфизма и гомотопии. Грубо говоря, это типы деформации, происходящие без разрывов и склеиваний. История Семь мостов Кёнигсберга — известная задача, решённая Эйлером и способствовавшая развитию топологии Раздел математики, который мы теперь называем топологией, берет свое начало с изучения некоторых задач геометрии. Различные источники указывают на первые топологические по духу результаты в работах Лейбница и Эйлера, однако термин «топология» впервые появился в 1847 году в работе Листинга. Листинг определяет топологию так: «Под топологией будем понимать учение о модальных отношениях пространственных образов, или о законах связности, взаимного положения и следования точек, линий, поверхностей, тел и их частей или их совокупности в пространстве, независимо от отношений мер и величин». Когда топология еще только зарождалась (XVIII—XIX века), её называли геометрия размещения (лат. geometria situs) или анализ размещения (лат. analysis situs). Приблизительно с 1925 по 1975 годы топология являлась сильно развивающейся отраслью в математике. Общая топология зародилась в конце XIX в. и оформилась в самостоятельную математическую дисциплину в начале XX в. Основополагающие работы принадлежат Хаусдорфу, Пуанкаре, Александрову, Урысону, Брауэру.