Случайные величины 14 сен
Виды случайных величин Определение 3.1. Случайной величиной называется величина, которая в результате опыта принимает то или иное случайное значение. Обычно случайная величина обозначается большой буквой, а её возможные значения – такой же маленькой (может быть, с индексом) или числами. Вот некоторые примеры. • Число на верхней грани кости при её бросании X. Возможные значения X: 1, 2, …, 6. Эти числа можно обозначить x1, x2, …, x6. Всего у данной величины 6 возможных значений. • Число покупателей в магазине в течение дня X. Возможные значения этой величины: 0, 1, 2, …. Здесь верхний предел неизвестен. В теоретических исследованиях удобно считать, что возможные значения X – все целые неотрицательные числа (бесконечное множество значений x0, x1, x2, …, xn, …). • Время работы изделия до отказа T. Здесь возможные значения – неотрицательные действительные числа. Мы не знаем максимального значения, поэтому также считаем, что t ϵ [0; ∞). Виды случайных величин Определение 3.2. Случайная величина называется дискретной, если множество её возможных значений конечно или является бесконечным счётным множеством. Определение 3.3. Случайная величина называется непрерывной, если множество её возможных значений целиком заполняет некоторый промежуток или систему промежутков. Определение 3.4. Дискретная случайная величина называется конечнозначной, если множество её возможных значений конечно. Определение 3.5. Дискретная случайная величина называется бесконечнозначной, если множество её возможных значений является бесконечным счётным множеством.